Cambridge International AS \& A Level

CANDIDATE NAME

\square CANDIDATE NUMBER

CHEMISTRY

9701/52
Paper 5 Planning, Analysis and Evaluation
May/June 2021
1 hour 15 minutes
You must answer on the question paper.
No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working, use appropriate units and use an appropriate number of significant figures.

INFORMATION

- The total mark for this paper is 30 .
- The number of marks for each question or part question is shown in brackets [].

1 A student is asked to find the enthalpy change for the reaction between anhydrous magnesium sulfate and water.

$$
\mathrm{MgSO}_{4}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

This enthalpy change cannot be measured directly.
(a) Predict whether the enthalpy change for this reaction is positive or negative. Explain the reason for your prediction.
prediction \qquad
explanation \qquad
\qquad
(b) The student decided to do two separate experiments.

Experiment 1

To find the enthalpy change of solution of anhydrous magnesium sulfate, $\mathrm{MgSO}_{4}(\mathrm{~s})$, 0.0250 moles of $\mathrm{MgSO}_{4}(\mathrm{~s})$ are dissolved in $50.0 \mathrm{~cm}^{3}$ distilled water.

Experiment 2

To find the enthalpy change of solution of hydrated magnesium sulfate, $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (s), 0.0250 moles of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ are dissolved in $50.0 \mathrm{~cm}^{3}$ distilled water.

The results for Experiment 1 are shown in the graph of temperature against time on page 3.
(i) Draw and extrapolate the cooling curve back to 180 seconds. Determine the temperature change during the reaction.

$$
\begin{equation*}
\text { temperature change }= \tag{}
\end{equation*}
$$

\qquad
(ii) The anhydrous magnesium sulfate was not added when the timing started.

Explain why.
\qquad
\qquad

(iii) $3.01 \mathrm{~g}(0.0250 \mathrm{~mol})$ of anhydrous magnesium sulfate is weighed.

Outline the next steps that should be taken in order to obtain the results in Experiment 1.
Write your answer using a series of numbered steps.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(c) (i) The student realised that when dissolving 0.0250 moles $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ (s), the amount of water present in the compound alters the total volume of water used in Experiment 2.

Calculate the volume of distilled water needed to make the total volume of water $50.00 \mathrm{~cm}^{3}$ in Experiment 2.

Give your answer to the nearest $0.05 \mathrm{~cm}^{3}$.
Assume that $1.00 \mathrm{~cm}^{3}$ of distilled water has a mass of 1.00 g .
[$A_{\mathrm{r}}: \mathrm{O}, 16.0 ; \mathrm{H}, 1.0$]
volume of distilled water $=$
cm^{3}
(ii) State which piece of apparatus should be used to measure the volume of distilled water in (c)(i).

Explain your answer.
apparatus \qquad
explanation \qquad
(d) The temperature change when 0.0250 moles of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is added to the water is very small.

Suggest how the student should modify the experimental procedure to make the temperature change larger.
\qquad
(e) (i) The energy released by 0.0250 moles of $\mathrm{MgSO}_{4}(\mathrm{~s})$, in Experiment 1, is 2125 J . The energy absorbed by 0.0250 moles of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$, in Experiment 2, is 477.5 J .

Calculate the enthalpy change, ΔH, for the reaction.
Include a sign in your answer. Give your answer to one decimal place.

$$
\mathrm{MgSO}_{4}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(\mathrm{~s})
$$

enthalpy change, $\Delta H=$ \qquad kJmol^{-1}
(ii) The student noticed that some $\mathrm{MgSO}_{4}(\mathrm{~s})$ in Experiment 1 was left undissolved.

State and explain the effect this would have on the value of the enthalpy change for the reaction in Experiment 1.
effect \qquad
explanation \qquad
[Total: 14]

2 A student is asked to determine the acid dissociation constant, K_{a}, for butanoic acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$.

$$
K_{\mathrm{a}}=\frac{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right]}
$$

The student is told to measure the pH of eight buffer solutions containing $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and the salt sodium butanoate, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}$. The salt provides butanoate ions, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$, as the base.

Each buffer solution contains a different ratio of $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right]$ to $\left[\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}\right]$.
Each buffer solution is prepared by mixing different volumes of distilled water, $2.00 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $2.00 \mathrm{moldm}^{-3} \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}$.
(a) Pure butanoic acid must be kept away from naked flames.

Explain why.
\qquad
(b) (i) What is the maximum volume of a $2.00 \mathrm{~mol} \mathrm{dm}^{-3}$ solution that can be prepared using 55.0 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}(\mathrm{s})$?
[$A_{\mathrm{r}}: \mathrm{Na}, 23.0 ; \mathrm{O}, 16.0 ; \mathrm{C}, 12.0 ; \mathrm{H}, 1.0$]
volume $=$ \qquad cm^{3} [1]
(ii) A student is given 55.0 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}(\mathrm{s})$ in a beaker.

Describe the next steps the student should take to make a $2.00 \mathrm{moldm}^{-3}$ solution of the volume calculated in (b)(i).

Give the name and capacity of any key apparatus which should be used.
Write your answer as a series of numbered steps.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) Complete the table to show the volumes of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-} \mathrm{Na}^{+}(\mathrm{aq})$ and distilled water that would be needed to provide the stated number of moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$for a $50.0 \mathrm{~cm}^{3}$ buffer solution.

moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	volume of $2.00 \mathrm{moldm}^{-3}$ $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ $/ \mathrm{cm}^{3}$	moles of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$	volume of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-3} \mathrm{Na}^{+}$ $/ \mathrm{cm}^{3}$	volume of distilled water $/ \mathrm{cm}^{3}$
0.050	25.0	0.005		
0.050	25.0	0.008		
0.050	25.0	0.010		
0.050	25.0	0.025		
0.030	15.0	0.050		
0.010	5.0	0.050		
0.006	3.0	0.050		
0.004	2.0	0.050		

(c) The pH of each buffer solution is measured.

The value of the pH is recorded in the table along with the number of moles of the $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$in each $50 \mathrm{~cm}^{3}$ solution of buffer.
(i) Complete the table. Give your values of $-\log \left(\frac{[\text { acid }]}{[\text { base }]}\right)$ to two decimal places.

moles of acid, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$	moles of base, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COO}^{-}$	ratio of [acid]/[base]	$-\log \left(\frac{[\text { acid }]}{[\text { base }]}\right)$	pH
0.050	0.005	10.00		3.82
0.050	0.008	6.25		4.01
0.050	0.010	5.00		4.12
0.050	0.025	2.00	4.70	
0.030	0.050	0.60	5.04	
0.010	0.050	0.20		5.52
0.006	0.050	0.12		5.74
0.004	0.050	0.08		5.91

(ii) Plot a graph of pH (y-axis) against $-\log \left(\frac{[\text { acid }]}{[\text { base }]}\right)(x$-axis) on the grid on page 9 .

Use a cross (x) to plot each data point. Draw a line of best fit.
(iii) Circle the point on the graph you consider to be most anomalous.

Suggest one reason why this anomaly may have occurred during this experimental procedure. Assume no error was made in recording the pH .
\qquad
(iv) When the concentration of acid is equal to the concentration of base, $\mathrm{pH}=\mathrm{pK}_{\mathrm{a}}$. Use this information and your graph to find the value for the $\mathrm{p} K_{\mathrm{a}}$.

$$
\mathrm{p} K_{\mathrm{a}}=
$$

(v) Use your answer to (c)(iv) to calculate the value of K_{a}. State the units of K_{a}. Give your answer to three significant figures.

$$
\mathrm{p} K_{\mathrm{a}}=-\log K_{\mathrm{a}}
$$

$$
\begin{aligned}
K_{\mathrm{a}} & =\text {............................. } \\
\text { units } & =\text {.............................. }
\end{aligned}
$$

(d) The value of $\mathrm{p} K_{\mathrm{a}}$ is lower when the experiment is repeated at a higher temperature.

What does this tell you about the enthalpy of dissociation of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$?
Explain your answer.
\qquad
\qquad

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

